

“"
Bilkent University

Senior Design Project

Project name: Upfix

Low-Level Design Report

Meryem Efe, Hamza Pehlivan, Özge Yaşayan, Hazal Aksu, Rabia Nur Önal

Supervisor: Uğur Güdükbay

Contents

1. Introduction 3

1.1. Object Design Trade-off 4

1.1.1. Inference Time vs Image Quality 4

1.1.2. Development Time vs Functionality 4

1.1.3. Cost vs Performance 5

1.2. Interface Documentation Guidelines 5

1.3. Engineering Standards (e.g., UML and IEEE) 5

1.4. Definitions, Acronyms, and Abbreviations 6

2. Packages 6

2.1. Training Model Packages 6

2.1.1. Data Collection Package 7

2.1.2. Neural Network Package 7

2.1.3. Model Interface Package 8

2.2. Application Packages 9

2.2.1. Service Package 9

2.2.2. Controller Package 10

3. Class Interfaces 11

3.1. Training Model Classes 11

3.1.1. Data Collection Package 11

3.1.2. Neural Network Package 11

3.1.3. Model Interface Package 13

3.2. Application Classes 14

3.2.1. Service Package 14

3.2.2. Controller Package 15

References 16

2

Low-Level Design Report
Project Short-Name: Upfix

1. Introduction

Gaming is undoubtedly a significant source of entertainment for many people.

The game industry has been growing rapidly, notably with the ever-rising

popularity of video games as well as online versions of classic games such as

chess.

The number of people who play games is increasing thanks to such popular

games and online platforms [1, 2]. Consequently, the number of people who
consume video contents related to gaming is increasing simultaneously as

well. As a result, a new sub-industry named Gaming Video Content (GVC)

has emerged. According to data collected in 2017, the number of GVC
viewers has reached 666 million globally [2]. In the GVC industry, Twitch is

the leading platform, accounting for 54% of the gaming video content platform
revenue in 2017 with Youtube following right behind [3]. Even though these

platforms are widely popular, users can still face issues in watching game
videos in high quality which is mostly due to limited internet connection. Since

watching videos in high resolution consumes more data, users opt to watch

videos in low resolution even though it may not be desired. Furthermore, the
same problem occurs when people want to upload a game video on the

internet. Therefore, all these issues compel us to pay attention to the need of

improved video upscaling techniques.

Note that big game companies are trying to provide high quality game videos

for their viewers. For example, Valve provides GOTV to stream Counter Strike

tournaments and DotaTV for Dota2 tournaments [4, 5]. Their approach
requires geographically distributed proxy servers, which small game

companies may not prefer. Furthermore, in general, tournaments and
important events are streamed on the network with this approach. This means

viewers who want to watch gameplays other than predetermined contents

may not be able to obtain high quality videos.

3

The purpose of our Senior Design Project is to design and implement an
application which will provide a platform that provides higher quality game

videos. Initially, we are planning to provide chess, go, Age of Empires [6] and
Among Us [7] game videos. Using our application, games of relatively small

companies, which do not prefer investing money in proxy servers, can be

watched with high quality. Moreover, viewers who want to watch their favorite
streamer - some chess or go player for example- with high quality can use our

application.

In this report, we are going to narrate the low-level design of the project.

1.1. Object Design Trade-off

1.1.1. Inference Time vs Image Quality

In the neural network side of the project, we are trying to train a model which

can give better results in super resolution. There are 4 OpenCV models
trained for super resolution. One of them, EDSR, gives impressive results.

However, there is a trade-off between time and quality. Even though EDSR
has amazing results, it is a huge model and it takes a long time. Therefore, we

chose a smaller model which is ESPCN.

1.1.2. Development Time vs Functionality

Initially, we decided to have a dedicated web application and a desktop

application that provided similar functionality, even though there were minor
differences, such as the web application being able to fetch videos from

various websites like YouTube and Twitch. However, because of the
development time constraint, we decided to prioritize the desktop application

and only build the web application if the time allowed us to do so. This means

that we will be losing some of the functionality provided by the web application
that does not exist in the desktop application, however, we will at least

complete the desktop application in the given time frame. We decided that this
would be much more desirable than ending up with two unfinished

applications.

4

1.1.3. Cost vs Performance

Even though we can use a neural network with much higher performance on
super-resolution, we decided not to use it, because its cost can be too much

for the end user. That is why the neural network’s huge architecture requires

using powerful GPUs. Therefore, we will use a different neural network which
has smaller architecture in order to reduce cost, even though its performance

is not as good as the previous one.

1.2. Interface Documentation Guidelines

In this documentation, all class names are named with standard class names

in upper camel case. In the hierarchy, after class name, class description, its
properties, its methods and explanations are listed.

1.3. Engineering Standards (e.g., UML and IEEE)

In all the reports, we followed UML design principles for all diagrams and the

IEEE citation format for referencing the resources [8, 9].

5

Class: ClassName

Class description

Properties

property: PropertyType → Property description

Methods

method(param1: ParamType, param2: ParamType): ReturnType → Method description

1.4. Definitions, Acronyms, and Abbreviations

2. Packages

Our development team works on two parts which are training the model and

developing the application. Since these two processes are carried out

simultaneously, we will explain them separately in the following section.

2.1. Training Model Packages

The system used to train models are divided into 3 packages by considering

their purposes.

6

Term Definitions, acronyms, and abbreviations

GVC Gaming Video Content

SR Super Resolution

Transfer Learning Transfer learning is a machine learning technique where a
model developed for a task is reused as the starting point
for a model on another related task [10, 11].

OpenCV “OpenCV (Open Source Computer Vision Library) is an
open source computer vision and machine learning
software library. The library has more than 2500 optimized
algorithms, which includes a comprehensive set of both
classic and state-of-the-art computer vision and machine
learning algorithms [12].”

CNN Convolution Neural Network [13]

ESPCN ESPCN (Efficient Sub-pixel Convolutional Neural Network)
is a neural network architecture provided by OpenCV. It
can do real time video upscaling [14].

EDSR EDSR (Enhanced Deep Residual Networks) is a neural
network architecture provided by OpenCV. It produces
impressive results on super resolution [15].

JavaFX “JavaFX is a set of graphics and media packages that
enables developers to design, create, test, debug, and
deploy rich client applications that operate consistently
across diverse platforms [16].”

2.1.1. Data Collection Package

To train models, we did not use any prepared dataset, but we collected data
by ourselves. Therefore, we had to preprocess the videos we collected in

order to generate a dataset. This package is used for this purpose. We
manually downloaded proper game video contents. After, through this

package, we created a dataset by extracting and preprocessing the frames.

2.1.2. Neural Network Package

7

To train models, we planned to apply transfer learning on ESPCN, an
OpenCV model that can do real time video upscaling. This package includes

the classes which are used for training, evaluating, and testing the model.

2.1.3. Model Interface Package

The desktop application is implemented in Java; however, video processing
methods are done by using python libraries. Therefore, as a model developer

team, we created the package which can have a role as an interface between

model and application. In this way, after testing this package is completed by
the model developer team, the application will be able to use the model

through this interface.

8

2.2. Application Packages

The classes regarding the desktop application are contained in two packages:

service and controller.

2.2.1. Service Package

Service package includes a Video class that is necessary in order to store the

original and upscaled video objects.

It also has a VideoUpscaler class that is responsible for upscaling the videos

with the help of a Python script.
9

Lastly, the UserService class in this package has the tasks of registering the
user’s video selection to be upscaled, running the upscaler and displaying the

upscaled video.

2.2.2. Controller Package

This package is responsible for providing the user with a way to interact with
the application. There are various button objects that provide different

functionality for the UI.

UploadPageController controls the page where the user selects a video file

via a file selector.

DisplayPageController controls the page where the user can display the

upscaled video and save it to a location on their computer that they desire.

10

3. Class Interfaces

3.1. Training Model Classes

3.1.1. Data Collection Package

3.1.2. Neural Network Package

11

Class: DataCollection

This class is used to create and preprocess the dataset.

Methods

extractFrameByCropping(video_loc: String, frame_interval: int, crop_indices: Array) →
This method extracts frames from the video in the given path, crops the frames, and saves
them to the dataset directory.

renameByShuffling(dataset_dir: String) → This method renames all the images in the
given directory by shuffling their orders.

Class: ESPCN

This class represents the neural network model, performs training and testing operations.

Properties

image_size: int → Input image size.

is_train: boolean → Indicates whether train or test is run.

batch_size: int → Dataset batch size.

scale: int → Scale factor.

c_dim: int → channel dimensions

test_img: Image Array → Dataset for testing

images: Image Array → Dataset for training

labels: Image Array → Labels (high-resolution images)

util: Util → Util class object.

Methods

__init__(config: Option) → It is a Python constructor for the ESPCN object.

initializeHyperParameters() → It initializes hyperparameters like batch size, epoch and
some others like the loss function and optimizer.

12

initializeModel() → It initializes layers in the model like the convolutional layers and
activation functions.

train(config: Option) → This method starts training on the train dataset.

test(config: Option) → This method starts testing on the test dataset.

load(checkpoint_dir: String) → This method loads the model from the given directory.

save(checkpoint_dir: String, step: int) → This method saves the model to the given
directory.

Class: Evaluation

To improve the model, it should be evaluated. This class is created for this purpose.

Methods

calcPSNR(lowRes: Image, highRes: Image, scale: int): double → This method calculates
the PSNR score of the model.

calcSSIM(lowRes: Image, highRes: Image, scale: int): double → This method calculates
the SSIM score of the model.

Class: Util

This class contains utility functions such as preprocessing and saving images.

Methods

readImage(path: String) → This is a utility function that can read images from a given
directory.

saveImage(image: Image, path: String, config: Option) → This is a utility function that can
save the upscaled image to a specific location.

showImage(image: Image) → This method displays the given image for debugging
purposes.

cropImage(image: Image, scale: int) → This method crops the image so that it can be
divisible by the scale factor.

configureCheckpointDir(config: Option) → This method configures the checkpoint directory
in which models are saved.

preprocess(path: String, scale: int) : Dictionary → This method converts RGB color space
into YCrCb color space. Because YCrCb color space requires less information (data), this
process will allow us to infer the images faster.

loadData(is_train: bool, test_img: Image) : Dataset → This method loads the train data if
is_train parameter is true, otherwise it loads the test data.

3.1.3. Model Interface Package

13

Class: Main

This class is the main class which calls ESPCN and starts training / testing.

Properties

espcn: ESPCN → ESPCN object

Methods

main() → This method initializes the ESPCN object and starts the training by calling proper
methods.

Class: ModelInterface

This class is created to make the connection between the model and application. It
includes the necessary methods to perform video processing and upscaling operations.

Methods

extractFrames(video_path: String) → This method extracts frames of the given video in
order to upscale these frames.

upscale() → This method upscales the extracted frames by using the ESPCN model
whose parameters were fine tuned by transfer learning.

mergeFrames(images: Image Array, save_loc: String) → This method merges the
extracted frames and creates a new video.

concat_sound(video_path: String, sound_path: String) → This method concatenates the
sound and the created video.

3.2. Application Classes

3.2.1. Service Package

14

Class: UserService

This class contains the original video that is going to be upscaled and the methods to
upscale the video and display it.

Properties

originalVideo: Video → The original video that is going to be upscaled.
upscaledVideo: Video → Upscaled video object.
upscaler: VideoUpscaler → Instance of the VideoUpscaler class.

Methods

createOriginalVideo(path: String) → Creates the video instance according to the input
from the controller package.
runUpscaler(): Video → Method that runs the upscaler to upscale the video.
displayVideo() → Displays the upscaled video.

Class: VideoUpscaler

This class is where the upscaling process takes place.

Methods

upscale(originalVideo: Video): Video → This method upscales the image quality of the
given video and returns the resultant upscaled video.

Class: Video

This entity class contains information about the video objects.

name: String → Name of the video.
path: String → Path of the video.
content: File → Actual content of the video.

Methods

display() → This method displays the video.

3.2.2. Controller Package

15

Class: UploadPageController

This class controls the page where the user uploads the video to be upscaled.

Properties

uploadBtn: Button → Button that allows the user to upload a video to be upscaled.
nextBtn: Button → Button that switches to the next page.

Methods

uploadBtnClicked(event: Event) → Handles the clicking on the uploadBtn event by
displaying the file selector for the user to select the video file.
nextBtnClicked(event: Event) → Handles the clicking on the nextBtn event by moving onto
the next page.

Class: DisplayPageController

This class controls the page where the user displays and saves the upscaled video.

Properties

startBtn: Button → Starts the video.
pauseBtn: Button → Pauses the video.
stopBtn: Button → Stops the video.
saveBtn: Button → Saves the upscaled video to the desired location.

Methods

startBtnClicked(event: Event) → Handles the clicking on the startBtn event by starting the
video.
pauseBtnClicked(event: Event) → Handles the clicking on the pauseBtn event by pausing
the video.
stopBtnClicked(event: Event) → Handles the clicking on the stopBtn event by stopping the
video.
saveBtnClicked(event: Event) → Handles the clicking on the saveBtn event by saving the
video to the location picked by the user.

References

[1] “Hours of Gaming Unboxing Videos on YouTube Watched on Mobile,”

Think with Google. [Online]. Available:
http://www.thinkwithgoogle.com/marketing-strategies/video/gaming-video-wat

ch-time-statistics-on-youtube/. [Accessed: 27-Dec-2020].

[2] A. Guttmann, “Topic: Gaming video content market,” Statista. [Online].
Available: http://www.statista.com/topics/3147/gaming-video-content-market.

[Accessed: 27-Dec-2020].

[3] “2020 Video Game Industry Statistics, Trends & Data,” WePC,
09-Nov-2020. [Online]. Available:

http://www.wepc.com/news/video-game-statistics. [Accessed: 27-Dec-2020].

[4] “Counter-Strike: Global Offensive Broadcast,” Valve Developer

Community. [Online]. Available:
https://developer.valvesoftware.com/wiki/Counter-Strike:_Global_Offensive_B

roadc_ast/. [Accessed: 27-Dec-2020].

[5] Dota Watch,” Dota. [Online]. Available: http://www.dota2.com/watch/.

[Accessed: 27-Dec-2020].

[6] “Age of Empires Franchise - Official Website,” Age of Empires,

27-Aug-2020. [Online]. Available: https://www.ageofempires.com/. [Accessed:

27-Dec-2020].

[7] “Among Us on Steam,” Steam. [Online]. Available:

https://store.steampowered.com/app/945360/Among_Us/. [Accessed:

27-Dec-2020].

[8] “Unified Modeling Language”. [Online]. Available: https://www.uml.org/.

[Accessed: 08-Feb-2021].

[9] “IEEE Reference Guide.” [Online]. Available:

https://ieeeauthorcenter.ieee.org/wp-content/uploads/IEEE-Reference-Guide.

pdf. [Accessed: 08-Feb-2021].

16

[10] J. Brownlee, “A Gentle Introduction to Transfer Learning for Deep
Learning,” Machine Learning Mastery, 16-Sep-2019. [Online]. Available:

https://machinelearningmastery.com/transfer-learning-for-deep-learning/.

[Accessed: 27-Dec-2020].

[11] F. 7 and S. Martin, “What Is Transfer Learning?: NVIDIA Blog,” The

Official NVIDIA Blog, 14-Feb-2019. [Online]. Available:

https://blogs.nvidia.com/blog/2019/02/07/what-is-transfer-learning/.
[Accessed: 27-Dec-2020].

[12] OpenCV, 13-Oct-2020. [Online]. Available: https://opencv.org/.

[Accessed: 27-Dec-2020].

[13] “Convolutional Neural Networks,” Coursera. [Online]. Available:
https://www.coursera.org/learn/convolutional-neural-networks. [Accessed:

27-Dec-2020].

[14] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D.
Rueckert, and Z. Wang, “Real-Time Single Image and Video

Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network,”
arXiv.org, 23-Sep-2016. [Online]. Available: https://arxiv.org/abs/1609.05158.

[Accessed: 08-Feb-2021].

[15] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced Deep

Residual Networks for Single Image Super-Resolution,” arXiv.org,
10-Jul-2017. [Online]. Available: https://arxiv.org/abs/1707.02921. [Accessed:

08-Feb-2021].

[16] JavaFX. [Online]. Available: https://openjfx.io/. [Accessed:

27-Dec-2020].

17

