
“"

Bilkent University

Senior Design Project

Project name: Upfix

Final Report

Meryem Efe, Hamza Pehlivan, Özge Yaşayan, Hazal Aksu, Rabia Nur Önal

Supervisor: Uğur Güdükbay

Table of Contents

1. Introduction 4

2. Requirement Details 5

2.1. Functional Requirements 5

2.2. Non-functional Requirements 5

2.2.1. Performance 5

2.2.2. Usability 6

2.2.3. Scalability 6

2.2.4. Extensibility 6

2.2.5. Security 6

3. Final Architecture and Design Details 6

3.1. Overview 6

3.2. Subsystem Decomposition 7

3.3. Hardware / Software Mapping 7

3.4. Persistent Data Management 8

4. Development / Implementation Details 8

4.1. Model 8

4.1.1. Data Collection and Preprocessing 9

4.1.2. First Model Trial 9

4.1.3. Existing OpenCV Models 10

4.1.4. Training ESPCN [11] 10

4.1.5. SRGAN [12] 13

4.2. Application 20

4.2.1 Application Implementation Overview 20

4.2.2 Application UI 20

4.2.3 Integration with the Model 22

5. Testing Details 23

5.1. Testing Details on Model Development and Integration 24

5.2. Testing Details on Application Development 25

6. Maintenance Plan and Details 25

7. Other Project Elements 26

7.1. Consideration of Various Factors in Engineering Design 26

2

7.1.1. Public Health 26

7.1.2. Public Safety 26

7.1.3. Public Welfare 26

7.1.4. Global, Cultural & Social Factors 27

7.1.5. Environmental Factors 27

7.1.6. Economic Factors 27

7.2. Ethics and Professional Responsibilities 27

7.3. Judgements and Impacts to Various Contexts 28

7.4. Teamwork Details 28

7.4.1. Contributing and Functioning Effectively on the Team 29

7.4.2. Helping Creating a Collaborative and Inclusive Environment 30

7.4.3. Taking Lead Role and Sharing Leadership on the Team 31

7.4.4. Meeting Objectives 31

7.5. New Knowledge Acquired and Learning Strategies Used 32

8. Conclusion and Future Work 33

9. User Manual 35

9.1. Homepage, Uploading Video 35

9.2. Video Processing 36

9.3. Watching, Saving Upscaled Video 38

9.4. Options 39

References 41

3

Final Report
Project Short-Name: Upfix

1. Introduction

Gaming is undoubtedly a significant source of entertainment for many people.

The gaming industry has been growing rapidly, notably with the ever-rising

popularity of video games as well as online versions of classic games such as

chess.

The number of people who play games is increasing thanks to the popular

games and online platforms [1, 2]. Consequently, the number of people who

consume video contents related to gaming is increasing simultaneously as

well. As a result, a new sub-industry named Gaming Video Content (GVC)

has emerged. According to data collected in 2017, the number of GVC

viewers has reached 666 million globally [2]. In the GVC industry, Twitch is the

leading platform, accounting for 54% of the gaming video content platform

revenue in 2017 with Youtube following right behind [3]. Even though these

platforms are widely popular, users can still face issues in watching game

videos in high quality which is mostly due to limited internet connection. Since

watching videos in high resolution consumes more data, users opt to watch

videos in low resolution even though it may not be desired. Furthermore, the

same problem occurs when people want to upload a game video on the

internet. Therefore, all these issues compel us to pay attention to the need of

improved video upscaling techniques.

It should be noted that big game companies are trying to provide high quality

game videos for their viewers. For example, Valve provides GOTV to stream

Counter Strike tournaments and DotaTV for Dota2 tournaments [4, 5]. Their

approach requires geographically distributed proxy servers, which small game

companies may not prefer. Furthermore, in general, tournaments and

important events are streamed on the network with this approach. This means

viewers who want to watch gameplays other than predetermined contents

may not be able to obtain high quality videos.

4

The purpose of our Senior Design Project is to design and implement an

application that provides higher quality game videos by upscaling. In this

project, we provided a platform for chess, go, Age of Empires [6] and Among

Us [7] game videos. Using our application, games of relatively small

companies, which do not prefer investing money in proxy servers, can be

watched with high quality. Moreover, viewers who want to watch their favorite

streamer - some chess or go player for example- with high quality can use our

application.

2. Requirement Details

2.1. Functional Requirements

● The users can upload a video from the local file system to be upscaled.

● The application upscales the uploaded video by using GPU or CPU

offline. The usage of GPU or CPU is determined by the program

according to the system properties.

● The user can watch the upscaled video.

● The user can save the upscaled video to the local file system.

2.2. Non-functional Requirements

2.2.1. Performance

● The user is able to start watching the upscaled video in at most 3

minutes.

● The response time for the desktop application does not exceed 2

seconds.

● Even though the total upscaling time depends on the length of the

video, the upscaling time of one frame is less than 0.01 second.

5

2.2.2. Usability

● The system is easy enough to be used by anyone of all ages with basic

computer skills.

● The system comes with an explanatory user’s manual, that can be

viewed at the end of this report.

2.2.3. Scalability

● The desktop application is able to upscale one video at a time.

2.2.4. Extensibility

● The system is designed in a way that makes it easy to integrate new

upscaling algorithms, improved models, and support for more games in

the future.

● The system can be extended in a way that it upscales not only the

game videos but also low-quality photographs. In this way, the system

can use high-qualified but slow models as well. The slow models are

not preferred in video upscaling but they can be preferred in image

upscaling.

2.2.5. Security

● The system does not disclose the data of its users to third parties.

3. Final Architecture and Design Details

3.1. Overview

In this part, we are going to explain the subsystem decomposition which

describes the subsystem structure of our system in detail with diagrams. After,

we will provide a hardware / software mapping of the system. Then, we will

outline persistent data management, access control and security, global

service control, and boundary conditions.

6

3.2. Subsystem Decomposition

Figure 1. Subsystem Decomposition Diagram

3.3. Hardware / Software Mapping

The application behaves differently if the user has a CUDA enabled GPU. If

the user doesn’t have any GPU, the upscaling process is executed in the

CPU. However, if the user has a CUDA enabled GPU, the upscaling model

works on the GPU. The GPU is used to speed up inference and video

rendering time.

7

Figure 2. Hardware/Software Mapping Diagram

3.4. Persistent Data Management

In the Upfix desktop application, models need to be persistent. We used a

filesystem to persist models for the desktop application. Since our aim was to

upscale game videos by using local resources, we didn’t use any servers.

Instead, we stored the models in the user’s localhost. Additionally, in the

desktop application, we provided user settings options. In the settings, users

can choose the default save location and they can activate the auto-save

option.

4. Development / Implementation Details

In this section, the development and implementation details of the model and

application part will be explained separately.

4.1. Model

At the beginning of the development of the model, the model team determined

the strategy as follows:

- Plan A: Start with a simple CNN model on chess video. According to

the results, continue with RNN and GAN models.

8

- Plan B: If the response time is too long, apply transfer learning on

OpenCV pre-trained models.

In this section, we are going to explain the model development process in

detail.

4.1.1. Data Collection and Preprocessing

Regardless of the plan we applied, we needed a dataset because there was

no well-prepared dataset which consisted of any game we chose. Therefore,

we have collected game videos from different streamers, channels, and

platforms. Since we started training on chess videos, we first collect the chess

dataset. In data collecting and preprocessing, we followed these steps:

1. Chess videos were collected.

1.1. One frame was extracted in each 10 seconds.

1.2. Unnecessary parts were cropped.

1.3. Some frames were eliminated to reduce dataset size.

1.4. All the frames were shuffled and renamed accordingly.

2. Among Us videos were collected.

2.1. One frame was extracted in each 10 seconds.

2.2. Unnecessary parts were cropped.

2.3. Some frames were eliminated to reduce dataset size.

2.4. All the frames were shuffled and renamed accordingly.

3. Age of Empires videos were collected.

3.1. One frame was extracted in each 10 seconds.

3.2. Unnecessary parts were cropped.

3.3. Some frames were eliminated to reduce dataset size.

3.4. All the frames were shuffled and renamed accordingly.

4. To create a single dataset, all these three datasets were merged,

shuffled and renamed accordingly.

4.1.2. First Model Trial

Since we dealt with both low and high quality images in training, we predicted

that we could have resource problems. Therefore, we started with a simpler

9

model, CNN model instead of GAN model. Based on the research [8], we

created a structure as in Figure 1. Even though we created the structure

based on the research and started to train, we encountered some resource

problems and we switched to plan B.

Figure 3. Initial CNN Structure

4.1.3. Existing OpenCV Models

When we gave up training our models from scratch, we did research about

the current works on super resolution:

OpenCV is one of the open source libraries which provides deep learning

based pre-trained models for super resolution [9]. There are currently 4

different super resolution models provided by OpenCV. These are EDSR,

ESPCN, FSRCNN, LapSRN [10]. All these models differ in accuracy, size,

and speed. The best performing, biggest, slowest model is EDSR. ESPCN

and DSRCNN are smaller and faster models as well as they can do real-time

video upscaling. Lastly, LapSRN is a medium sized model and can upscale by

a factor of 8 while the other models can upscale by a scale of 4 at most.

We chose ESPCN to apply transfer learning and train on our dataset.

4.1.4. Training ESPCN [11]

We trained ESPCN network with our dataset. It is one of the fastest models

that can do real time upscaling. It is a CNN based model meaning that it can

10

be used with any image size as long as the image and the model fit in the

GPU.

Model:

Figure 4. ESPCN Network

The network consists of 3 convolutional layers followed by one pixel-shuffling

layer. Similar to transpose convolutional layers, pixel-shuffling layer is used to

increase width and height. For training, a single GeForce GTX 1650 Nvidia

GPU is used. Training time is usually between 3-4 hours depending on the

number of epochs. Adam optimizer with default parameters is used.

Loss Function: In addition to the mean square error loss function, we

implemented another loss function, which makes the network focus on edge

preservation. We refer to this loss function as the “Sobel Loss Function” in this

report. So the total loss is:

where,

x and y: Pixel locations,

HRorig: Original high resolution image,

HRout: Output of the network,

11

W: Weight for the second loss function,

SOBELorig: Gradient values of HRorig after Sobel Edge Detection,

SOBELout: Gradient values of HRout after Sobel Edge Detection.

Experiments:

For the following table low resolution image size is 17 and batch size is 256.

Created high resolution image size is 51, which means upscaling factor is 3.

Shuffle
Dataset at

Each Epoch

Learning
Rate

Sobel Loss
Function
Weight

Final Loss Final PSNR
Score

True 0.01 0 0.003454613 29.35945436

True 0.01 0.1 0.003964783 28.00200416

False 0.001 1 0.002773533 31.84912184

False 0.0001 1 0.003011706 32.43387493

False 0.001 2 0.002589095 33.03260336

Table 1. Experiment Results

We also conducted experiments with different initial image size, batch size

and learning rates - like 0.003- ;however, none of them were good enough.

Graphs:

Graph 1. Loss vs Epoch Number

12

Graph 2. PSNR Score vs Epoch Number

The results are better than the traditional upsampling:

Figure 5. Left image is ESPCN network, right image is bicubic interpolation. We observed that

the edges are smoother.

4.1.5. SRGAN [12]

Even though we got better results from traditional upscaling methods, we

wanted to see whether we can obtain more good-looking results. Therefore,

we decided to use SRGAN, which is a Generative Adversarial Neural

Network. When we deployed this network we realized that upscaling of an

image takes 3 seconds. This number is not suitable for real time upscaling;

13

therefore we modified the network. We decreased the number of residual

blocks from 12 to 4, filter sizes from 64 to 32. Lastly, we converted regular

residual blocks to inverse residual blocks, which increases time efficiency. We

managed to decrease elapsed time to 1 second; however, this also was not

good enough. Finally, we found a fast SRGAN implementation on the internet,

which uses inverse residual blocks, and decreased the number of filters

together with some additional modifications. These modifications include

reducing the size of the Discriminator and some other parts of the Generator.

Because this code was more optimized than our modified network, we

decided to use it.

Models:

Generator:

Figure 6. Modified SRGAN Generator

14

Discriminator:

Figure 7. Modified SRGAN Discriminator

The network is trained on a single GeForce GTX 1650 Nvidia GPU. The

learning rates are 0.0001 and 0.0005 for generator and discriminator,

respectively. Learning rate scheduling with 0.1 exponential decay is used.

Low resolution image size is taken as 32x32 and the generator produces

128x128 high resolution images, meaning upscale factor is 4. Because the

generator has a CNN architecture, this setup can be applied to any size of

images. Adam optimizer with default parameters is used. The model is trained

for 1000 epochs.

Loss Functions:

Generator Loss: Generator loss is the summation of adversarial, content and

mean squared error losses.

G = 10-3ADVERSARIAL+ CONTENT + MSE

Adversarial loss: Adversarial loss is the standard method for generator

adversarial neural networks. The generator tries to fool the discriminator by

producing realistic images. It tries to decrease this function.

15

D(Î) : The probability that the discriminator thinks the fake image (output of

generator) is real.

D(I) : The probability that the discriminator thinks the real image is real.

Content Loss: Content loss is calculated using a pretrained VGG network.

Both fake and real images pass through VGG. The tensor values from a

specific layer are extracted for both images. The difference between these

values gives the content loss.

Mean Square Error: This function is the same function that we used in CNN

network.

Discriminator Loss: The discriminator tries to find out if a given image is

real. It tries to increase standard adversarial loss function.

16

Graphs:

Graph 3. Adversarial Loss vs Number of Iterations

Graph 4. Content Loss vs Number of Iterations

17

Graph 5. Mean Square Error Loss vs Number of Iterations

Graph 6. Discriminator Loss vs Number of Iterations

Even though the network is small, we observed that even 100x100 images

together with the generator does not fit into a 4 GB GPU (Batch size is 1,

smallest value possible). Therefore, we decided to divide the image into

32x32 size parts, and upscale these smaller parts. After upscaling, we

merged them, obtaining a high resolution image. Because of this, our network

can upscale any image as long as their width and height are a multiple of 32.

18

Figure 8. Original low resolution image

Figure 9. Upscaled version of the original image. Note that the difference is quite noticeable

around the buildings.

19

4.2. Application

4.2.1 Application Implementation Overview

The implementation of the desktop application for Upfix was divided into three

parts: the graphic user interface, the back-end of the user interface and finally

the integration of the desktop application with the model. There are four pages

that the users can interact with: Upload Page, Loading Page, Display Page

and Options Page.

The flow of the application is mainly as follows: the user is prompted to upload

a video in the Upload Page. After fetching the path of the desired video, this

path is forwarded to the next page, which is called the Loading Page.

Loading Page is responsible for using the Model Interface to make necessary

calls for the Python scripts to be executed for the upscaling process. In the

meantime, the progress is displayed to the user by a text that lets them know

what part of the upscaling is being done, e.g. extracting frames, merging

frames, concatenating audio etc. This page forwards the upscaled video to

the next page, which is called the Display Page.

Display Page has the video thumbnail, extracted from the upscaled video

itself, by choosing a random frame from it. The user can watch the video by

clicking a button which starts up their default media player application. They

can also choose to save the video to their computers. If they have the

auto-save option off, they will choose the save location themselves.

Otherwise, the video will be saved automatically to the location they chose in

the Options Page. After this, the user may choose to upscale another video,

or terminate the program.

4.2.2 Application UI

The user interface was prepared using Java, JavaFX and XML with the open

source visual layout tool Scene Builder.

20

While the FXML files displayPage.fxml, loadingPage.fxml, optionsPage.fxml

and uploadPage.fxml dictates what the pages in the user interface should look

like, their respective Java controller classes DisplayPageController,

LoadingPageController, OptionsPageController and UploadPageController

determine how the objects on the page interact with each other and/or the

user. A more detailed synopsis of the controller classes is given below.

UploadPageController

Details the functions: In the event that the upload button is clicked, it prompts

to open the file explorer of the user’s computer and requires that they choose

a video to be upscaled. Once the user chooses their video, a new Video

object is created with the chosen video’s information. It loads the Loading

Page if the next button is clicked, or loads the Options Page if the options

button is clicked. Loading Page has the access to the Video object created in

this class.

OptionsPageController

Details the functions: Upon the select button being clicked, it prompts the

folder chooser and requires the user to choose a folder destination. If a

directory is chosen, then it is set as the default save location for the upscaled

video. If the auto-save checkbox is checked by the user, then the auto-save

functionality is enabled, which means that the user will not see the file

chooser window when they want to save the video. Instead, the video will be

automatically saved to the desired save location, and the user will see a

confirmation message.

The option preferences are saved in an XML file, which is updated when the

user terminates the program and they are read from the XML file whenever

the user starts the program. This is done in order to not lose the data when

the program terminates.

The back button loads the previous page the user was on.

21

LoadingPageController

Details the functions: Communicating that the upscaling process of the model

can start. This means that the Python scripts will start executing in this order:

extracting the frames, upscaling the video, merging the frames, concatenating

the sound, and lastly, extracting a thumbnail for the video.

This screen also updates the text and images on the screen accordingly as

the upscaling process continues. If the back button is clicked, it deletes the

video information and loads the Upload Page. If the next button is clicked, it

creates and passes the upscaled video object and loads the Display Page.

DisplayControllerPage

Details the functions: Displaying the thumbnail extracted from the upscaled

video. If the save button is clicked and auto save was not selected

beforehand, it prompts open the file chooser of the computer and requires the

user to choose a destination for the upscaled video. The initial location that

shows up in the file chooser is the one that the user set on the Options Page.

If auto-save is enabled, the video is saved to the desired location

automatically and the user is prompted with a confirmation message.

If the home button is clicked, temporary files made while upscaling the video

are removed, and the Upload Page is displayed once again to the user so that

they can upload a new video.

4.2.3 Integration with the Model

We wrote utility Python scripts almost like a service layer that does the actual

frame extraction, upscaling etc. and a Java class to act as an interface to the

Python scripts to integrate the model to our application. Here are the details:

ModelInterface

This Java class is our interface to run Python scripts from the Java

application. It contains the information about the folder names used during the

22

upscaling process and public methods to initiate each of the scripts that do

the following steps of the upscaling process:

extract_frames

This is the first script to be called, extracts the frames of the input video file at

the specified rate, resizes them and saves them into the specified folder.

upscale

Improves the resolution of the extracted frames by running the model on each

of them and saves them back into the folder.

merge_frames

Merges the upscaled frames into a video file and saves it into the specified

folder.

concat_sound

Concatenates the sound of the source video onto newly created upscaled

video.

create_thumbnail_image

From the upscaled video, extracts a random frame and saves it into the

specified folder, to be used as the thumbnail in the later stages.

remove_folders

Clears the unnecessary folders that were produced during the process.

5. Testing Details

Since the testing strategy of the model and the application are slightly

different, we are going to explain them separately.

23

5.1. Testing Details on Model Development and Integration

Docker

First of all, we should emphasize that testing in neural network development is

not like testing any other software. We didn’t write any test code such as unit

test, module test etc. to test our model classes. However, this does not mean

that the model code works everywhere and at all times. While the testing

strategy is different in model development as we said, it has similar aspects to

other software testing problems such as environment dependency. The model

code requires some specific Python, OpenCV, TensorFlow versions. In order

to get rid of the problems caused by version differences and OS differences,

we containerized the model code by using Docker. In this way, we did no

longer need to consider installations. Also, both two teammates in the model

team could easily share the codes with each other and use them in both

Windows and Ubuntu computers.

Metrics for Testing Model

As we said, testing in the neural network is not like testing any other software.

The reason is that neural network development already consists of training

and testing parts. However, the test in neural network development is to check

how much the model's results have improved over time. In order to examine

this progress, we used some metrics such as SSIM, PSNR values.

Integration Testing

In the beginning, we worked independently as the model team and the

application team. However, we had to integrate the upscaling code into the

application after the model training was completed. As the model team, we

developed an interface so that the application team could use proper Python

codes without knowing their inside. We tested this interface both by using unit

testing and testing manually before integration. Also, it is important to say that

we tried to minimize defects by applying integration testing.

24

5.2. Testing Details on Application Development

Before the integration of the model into the desktop application, there was

only an interface that allowed switching between different pages in the

application, and some other buttons that had the functionality of selecting a

file from the local file system. These buttons (select file, go to the next page,

go back to the previous page) were tested manually as there weren’t many of

them and it was faster to try them out than writing unit tests. A lot of the tests

were related to the visuals of the application so we checked if the items were

in the right place and they looked as intended.

After the integration of the model was made by using the interface provided by

the machine learning team, several types of gameplay videos were tested in

order to confirm the thumbnail extracting functionality, auto-save functionality.

We also tested whether the Python scripts were being executed, and if they

were being executed in the correct order. Further information about the

integration tested was provided in section 5.1.

6. Maintenance Plan and Details

The main focus of our maintenance plan is the feedback from our users.

Since we created an offline application, we can not monitor its health and

performance directly so we will be depending on user feedback to

continuously improve our application. The communication will be established

by the contact section on our website. We will also be monitoring the updates

for the tools and libraries that we used and create B plans for each of them in

case they will not be supported in the future.

Improvements in both model and application context will be delivered to the

user by version updates. The intermediate versions are planned to be

released in case of bugfix requirements and smaller improvements in three

months periods at the latest whereas the main versions are planned to be

released for major updates like support for new games at least once every

25

year. We will also be working on the variants of Upfix which are described in

section 8 of this document in more detail.

7. Other Project Elements

This section covers various project elements such as Consideration of Various

Factors in Engineering Design, Ethics and Professional Responsibilities,

Judgements and Impacts to Various Contexts, Teamwork Details and New

Knowledge Acquired and Learning Strategies Used, which are written about in

detail below.

7.1. Consideration of Various Factors in Engineering Design

Various factors affecting the design and implementation of the application

have been considered and explained as follows:

7.1.1. Public Health

Upfix deep learning based upgrade models were trained on three games. We

chose these games considering the age groups they appeal to. There are

many games in the industry and most of them can negatively affect especially

children negatively. Therefore, if we increase the variety of games in the

future, we will consider public health and we will introduce some restrictions

for some age groups to use.

7.1.2. Public Safety

Upfix does not hold any personal information about its users, nor does it sell

to or share any information with third party applications. Since no information

about users is kept or displayed, it is out of reach from malicious parties as

well.

7.1.3. Public Welfare

Upfix does not affect public welfare, therefore it can not pose a threat to it.

26

7.1.4. Global, Cultural & Social Factors

Because Upfix’s user experience consists only of interaction with the

application itself rather than interaction with other users who use the

application, it is not modified heavily by global, cultural, and social factors.

The text that appears on the application’s user interface does not contain any

cultural insensitivity or hate-speech, and it is inclusive to all races and

genders. The application has its user interface in English as it is the current

lingua franca.

7.1.5. Environmental Factors

Upfix is a software application, so it is not affected by environmental factors.

7.1.6. Economic Factors

Upfix is completely free of charge to download and use. It also does not

require a network connection.

7.2. Ethics and Professional Responsibilities

In order to not violate the privacy of our users, the application does not hold

any personal information about its users nor does it sell such information to

and/or share it with any third-party applications.

All data used by and in this project, including the intended neural network,

complies with KVKK and GDPR regulations and does not violate any data

privacy laws enforced by both Turkey and the European Union.

All sources, source libraries and third-party software used in this project are

open-source and nonproprietary.

27

7.3. Judgements and Impacts to Various Contexts

Impact Level (out of 10) Judgement

Impact in Safety
Context

6 Does not inquire any private
user data to operate, does not
share data to any third
parties. However, requires
access and/or ability to modify
files as well as saving new
ones to the system.

Impact in Global
Context

4 While it is free, Upfix is yet an
application that only exists in
its own niche space. It could
be made more accessible to
the public via promotion/ ad
campaigns or by adding to the
system more video types
other than just gaming video
content.

Impact in Economic
Context

0 Free to use and does not
demand an internet
connection to operate.

Impact in
Environmental Context

0 None.

Table 2. Impact Level / Judgement Table

7.4. Teamwork Details

The members of the group worked on the following aspects of the project:

Rabia Nur Önal: She worked on the desktop application, designed and

implemented mostly the backend structure of the application, tested it before

the model integration and collaborated with other team members on verifying

the system as a whole.

28

Hamza Pehlivan: He was the head of the model team since he has great

interest and experience in deep learning. He took a role in preparing the

dataset and creating the first model. He applied transfer learning on the

ESPCN model. He also trained the GAN model and made it work in GPU. He

found and read necessary research papers. He helped to integrate the neural

network model into the app. Also, he tested the application after integration

and helped to solve bugs.

Meryem Efe: She prepared the dataset and created the first CNN structure.

She also helped Hamza in training the ESPCN model. She implemented

Model Interface codes which includes all the video processing steps and took

a role in integrating them into the application. Also, she tested the application

after integration and helped to solve bugs.

Hazal Aksu: She worked in the desktop application part of the project. She

helped in creating the graphical user interface and participated in the

debugging and testing processes as well as contributing to the overall

front-end design with her ideas.

Özge Yaşayan: She worked on the implementation of the desktop

application. She constructed the general structure of the UI classes. She

mainly designed and coded the layouts of the different pages and interactions

among them. She contributed to coding the controllers and the FXML files for

various pages. She also attended group debugging sessions and tested the

application.

7.4.1. Contributing and Functioning Effectively on the Team

Our group consisted of different teams that had different responsibilities.

Teams communicated among the members of the same team and we all tried

to communicate with everyone in the group to summarize our team’s progress

regularly. Having subgroups, or teams, as opposed to one big group, helped

us keep track of the tasks more effectively, and contributing was easier than

having just one group because the tasks could be assigned more easily and

we could spend more time focusing on our tasks rather than constantly

reporting to a big group of people. It was faster to communicate with 2-3

29

members. We could also spend more time on defining the tasks more clearly

and discussing the specifications among our teams, and since there were less

members, it was easier to reach a consensus.

Moreover, in order to ensure proper teamwork, we divided the project into

work packages and we chose each team member as a leader of one work

package. The leaders determined the tasks in the work page which they are

responsible for. Additionally, we divided the tasks into equal workload. In this

way, we could make a proper and equal work-share. We met regularly in order

to follow our progress and distribute new tasks.

Furthermore, even though every team member had a separate task, if one

finished their individual part, they would help the other team members to do

their parts in order to ensure the equality of teamwork and a collaborative

work environment.

The project had a private Github repository to keep the progress of the

project. Additionally, there were two separate folders in Google Drive for this

purpose. One of them was used for the reports and tracking the weekly

distribution of tasks. The other one included Google Colab files to train neural

network models. Through these repositories and files, we could track our

progress with ease and they could be shared with the supervisors and the jury

members.

7.4.2. Helping Creating a Collaborative and Inclusive Environment

Before starting the project, every group member talked about their past

experience with relevant technologies and mentioned what part of the project

they would prefer to work on. Having this discussion allowed us to focus on

our strengths as individuals and divide the work among ourselves in a way

that would emphasize our skills. Some members took machine learning

classes, and they had more experience with generating models, therefore

they offered to work on the machine learning model. The rest of the members

were more experienced in web and desktop application development, so they

chose to focus on those aspects of the project.

30

Allowing members to choose what they wanted to work with, increased the

collaboration and made sure that everyone was included in the project.

Everyone had a chance to put their past experiences and existing skills into

practice with the project and build upon those skills.

To encourage collaboration further, we had coding sessions as a group,

especially at the times where we had issues with certain bugs. We would

meet online as a group and one of us would share their screen, and we would

debug the code together. This increased the collaborativeness in our group

and allowed the two teams to interact more.

7.4.3. Taking Lead Role and Sharing Leadership on the Team

Our group did not have a pre-determined leader, however, some members

were more involved in organizing meetings and arranging the report templates

as well as reminding others about the deadlines. Overall, subgroups divided

the work among themselves however they wanted, and then reported to each

other. Everyone contributed to each of the reports as well. That being said,

there were members who took more initiative in order to regulate teamwork

among our group while the rest of the group members complied.

7.4.4. Meeting Objectives

Initially, we aimed to develop both a web application and a desktop

application. We could not meet this objective completely, as we only

developed a desktop application. This was because of the timing constraints

and our lack of knowledge and experience about making use of web servers

for upscaling purposes. We decided that it would make more sense to

prioritize the desktop application since we were more familiar in that area and

the desktop application utilized local resources of the users’ computers.

Developing the web application is mentioned as a part of the Future Work

section as we believe that it would be very useful for users who do not own

powerful computers.

As for the GUI of the project, our objectives were met except for a few things

such as not being able to embed the video player into the application. We

31

faced some problems that we could not solve and instead, we chose to show

the thumbnail of the upscaled video and redirect users to their default media

players with the click of a button.

For the model part of the project, our objectives were largely met. Even

though we didn’t try to train the RNN model, we trained both CNN and GAN

models. Also, we met our objectives for upscaling performance. In the

beginning, we were aware that there is a trade-off between inference time and

upscaled image quality. Therefore, we chose small networks in order to

reduce inference time. However, in the end, we realized that even though we

used a small network which works in real time, it still took a long time for video

upscaling. The main reason for time inefficiency is relatively small GPU

memory sizes. That is why it is not possible to copy the whole image or a

batch of images into GPU. As a result, even though we got a good result, this

super resolution technology is not ready to be used by end-users for real time

video upscaling.

7.5. New Knowledge Acquired and Learning Strategies Used

The knowledge that was acquired by group members and the strategies used

to learn can be mentioned separately for the application development team

and the model team.

First and foremost, the application development team learned how to work

with JavaFX and Scene Builder. This was done by following the official

documentation of JavaFX and looking through online guides and examples.

Since JavaFX is popular, there was an abundance of content on the internet.

Scene Builder was integrated into the IDE that we used, which was IntelliJ

Idea, and it was mainly figured out by the members with trial and error. Since

it had a straightforward interface, we did not need external help except for a

few instances, where we had to look up our problems on the internet, mainly

on Stack Overflow [13]. Apart from that, we had to learn FXML which is the

markup language that can be used with JavaFX. For this, we followed the

official tutorial provided by Oracle [14]. Lastly, since the application was

32

written mainly in Java, we used online forums such as Stack Overflow [13] to

find the answers to many questions we had about exceptions, bugs etc.

For the model development, even though the model team had little experience

about machine learning and deep learning techniques before, they didn’t

know the neural networks used for super resolution. Therefore, first of all, the

model team used online learning tools and followed the GAN course offered

by deeplearning.ai in Coursera [15]. Since improving the results is based on

doing more research, the model team have examined several articles about

super resolution. Additionally, they learned OpenCV to perform image/video

manipulation tasks, and Tensorflow to deploy CUDA-enabled processing. For

this purpose, OpenCV and TensorFlow documentations are highly utilized

[16], [17]. Another important new knowledge was Docker. The team used

Docker to containerize and replicate the training and testing environments.

DockerHub is used to find necessary Docker images [18]. Lastly, similar to the

application team, the model team faced some errors and used online forums

such as Stack Overflow [13] to solve them.

8. Conclusion and Future Work

In fact, the main aim of this project was to investigate upscaling techniques

and to try to improve existing models. In order to improve results, we

restricted the content to only three game types and we provided users with a

desktop application that allows users to upscale these game videos without

using internet connection.

We used super resolution in a specific content and with insufficient resources.

Therefore, we had to limit our requirements as well. However, we are also

aware that the super resolution techniques will be more improved, easy to

use, and preferred in the future.

As a future work of Upfix, we have several aims as listed below:

33

Game Variety: For now, Upfix models were trained on only three game types

which are Chess, Among Us, Age of Empires. In the future, we are planning

to train our models on more kinds of games.

Upfix Web App: Even though we initially planned to develop a web app as

well as a desktop app, our innovative expert strongly suggested that we give

up a web app and focus on only model training. However, in the future, if Upfix

would be developed as a web application, we could provide both B2C

(Business to Client) and B2B (Business to Business) services. This means

that we are planning to develop an upscaling service. We will both use this

service for our web application (B2B) and allow the contracted businesses to

use our services (B2C).

Browser Extension: There are some platforms leading the GVC industry

such as YouTube, Twitch, Dailymotion. In the future work, we believe if users

upscale the videos on these platforms by using just an Upfix browser

extension, it would be more user friendly and preferable.

Upfix FotoScaler: Even though Upfix is a game video upscaler application,

we actually upscale the frames of the video and then, we merge them again.

So, the same models we used can also be trained for any other images.

The main difference between upscaling a whole video and a single

photograph is the concern of inference time. Therefore, we could not use

some models such as SRGAN for video upscaling because it was very slow

even though it gave very impressive results. If we develop Upfix FotoScaler

as well as the current desktop app, we could also use such models.

Furthermore, we would give users the chance to see their old photos in high

quality.

34

9. User Manual

9.1. Homepage, Uploading Video

On the homepage, users can click the UPLOAD button and choose the video

by using the file chooser.

Figure 10. Initial Upload Page

When users upload their videos, they can start the upscaling process by

clicking the NEXT button.

35

Figure 11. Upload Page after a video is selected

9.2. Video Processing

When the users start the upscaling process, Upfix firstly extracts the frames

and upscales them. After, it merges all the upscaled frames and concatenates

this upscaled video and the sound of the original video. Upfix shows the

current status of the video processing so that the users can follow the

process.

36

Figure 12. Loading Page 1

Figure 13. Loading Page 2

37

Figure 14. Loading Page 3

9.3. Watching, Saving Upscaled Video

When the video processing is completed, the users can go back and

terminate this upscaling process or they can click the NEXT button to watch

and save the video.

Figure 15. Loading Page 4

38

The users see the thumbnail of the upscaled video and they can watch the

video on the default media player. If they don’t click the SAVE button and they

go back to the homepage, the upscaled video is deleted. If they click the

SAVE button, they can save the video by using the file chooser.

Figure 16. Display Page

9.4. Options

In the homepage, if the users can change the app settings by clicking the

OPTIONS button. In the options, they can set the default save location. Also,

they can activate the auto-save location if they click the Use Default Location

on Save option. If this option is activated, Upfix saves the upscaled video to

the default location automatically when the users click on the SAVE button.

39

Figure 17. Options Page

40

References

[1] “Hours of Gaming Unboxing Videos on YouTube Watched on Mobile,”

Think with Google. [Online]. Available:

http://www.thinkwithgoogle.com/marketing-strategies/video/gaming-video-wat

ch-time-statistics-on-youtube/. [Accessed: 27-Dec-2020].

[2] A. Guttmann, “Topic: Gaming video content market,” Statista. [Online].

Available: http://www.statista.com/topics/3147/gaming-video-content-market.

[Accessed: 27-Dec-2020].

[3] “2020 Video Game Industry Statistics, Trends & Data,” WePC,

09-Nov-2020. [Online]. Available:

http://www.wepc.com/news/video-game-statistics. [Accessed: 27-Dec-2020].

[4] “Counter-Strike: Global Offensive Broadcast,” Valve Developer

Community. [Online]. Available:

https://developer.valvesoftware.com/wiki/Counter-Strike:_Global_Offensive_B

roadc_ast/. [Accessed: 27-Dec-2020].

[5] Dota Watch,” Dota. [Online]. Available: http://www.dota2.com/watch/.

[Accessed: 27-Dec-2020].

[6] “Age of Empires Franchise - Official Website,” Age of Empires,

27-Aug-2020. [Online]. Available: https://www.ageofempires.com/. [Accessed:

27-Dec-2020].

[7] “Among Us on Steam,” Steam. [Online]. Available:

https://store.steampowered.com/app/945360/Among_Us/. [Accessed:

27-Dec-2020].

[8] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution

Using Deep Convolutional Networks,” arXiv.org, 31-Jul-2015. [Online].

Available: https://arxiv.org/abs/1501.00092. [Accessed: 07-Jan-2021].

[9] X. Weber, “Deep Learning based Super Resolution with OpenCV,”

Medium, 18-Jul-2020. [Online]. Available:

41

https://towardsdatascience.com/deep-learning-based-super-resolution-with-op

encv-4fd736678066. [Accessed: 27-Dec-2020].

[10] Opencv, “opencv/opencv_contrib,” GitHub. [Online]. Available:

https://github.com/opencv/opencv_contrib/tree/master/modules/dnn_superres.

[Accessed: 27-Dec-2020].

[11] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D.

Rueckert, and Z. Wang, “Real-Time Single Image and Video Super-Resolution

Using an Efficient Sub-Pixel Convolutional Neural Network,” 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[12] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-Realistic Single

Image Super-Resolution Using a Generative Adversarial Network,” 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[13] “Where Developers Learn, Share and; Build Careers,” Stack Overflow.

[Online]. Available: https://stackoverflow.com/. [Accessed: 30-Apr-2021].

[14] “Release: JavaFX 2.2.40,” Getting Started with JavaFX: Using FXML to

Create a User Interface | JavaFX 2 Tutorials and Documentation,

30-Aug-2013. [Online]. Available:

https://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm. [Accessed:

30-Apr-2021].

[15] “Generative Adversarial Networks (GANs),” Coursera. [Online].

Available:

https://www.coursera.org/specializations/generative-adversarial-networks-gan

s. [Accessed: 21-Nov-2020].

[16] “OpenCV modules,” OpenCV. [Online]. Available:

https://docs.opencv.org/master/. [Accessed: 30-Apr-2021].

[17] “API Documentation: TensorFlow Core v2.4.1,” TensorFlow. [Online].

Available: https://www.tensorflow.org/api_docs. [Accessed: 30-Apr-2021].

42

[18] Docker Hub. [Online]. Available: https://hub.docker.com/. [Accessed:

30-Apr-2021].

43

